${ }^{\mathrm{A}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ is a system for typesetting scientific documents. The documents are written in plan text source and then compiled to produce a graphical output (as a PDF or an image). The document can contain formulae and figures, written in the $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$ language, which are then rendered appropriately.
Regular text will be rendered as itself, but the following punctuation symbols have special meaning: The backslash symbol (\backslash) is used for "commands" or "macros" which insert special symbols or notation into the text. Braces (\{ and \}) are used to group symbols together into a block. Dollars (\$ and \$\$) are used to include formulae in the text.
There are two general modes of operation: "math mode" is used for formulae, and "text mode" is used for text. Formulae can be surrounded by single dollars to be included in the text "inline", for example $\$ \mathrm{a}+\mathrm{b}=c \$$ produces: $a+b=c$. Double dollars render a large formula in "display style", which inserts line breaks around the formula, and also has an effect on how some notation is rendered. For example $\$ \$ \mathrm{a}+(\mathrm{b}+\mathrm{c})=\mathrm{d} \$ \$$ produces:

$$
a+(b+c)=d
$$

As may be evident, most symbols (namely !, ', (,), *, +, , , -, ., $/$, :, ;, <, =, >, ?, [,], I) are rendered as themselves, however the commands in the following tables can be used to render other, more interesting kinds of symbols. To write literal braces and dollars, \\{, } $\\}$, and $\backslash \$$ can be used respectively.
To place a subscript or a superscript, _ and ^ can be used respectively. For example, $\mathrm{a} \wedge \mathrm{b}$ is a^{b} and $\mathrm{a} _\mathrm{b}$ is a_{b}. To place more than one character in a sub- or superscript, the expression can be surrounded with \{ and \}: $a^{\wedge}\{b+c\}$ produces a^{b+c}.
The $\backslash f r a c\left\}\left\}\right.\right.$ comman ${ }^{11}$ renders a fraction (e.g. $\backslash f r a c\{a\}\{b\}$ is $\frac{a}{b}$), and \backslash sqrt $\}$ renders a square root (e.g. \backslash sqrt $\{a\}$ is \sqrt{a}). Order can be specified by writing e.g. \sqrt[3]\{a\} for $\sqrt[3]{a}$.
Sums are typeset with \sum, e.g. \sum_\{i=0\}^\{n\} i^2 produces $\sum_{i=0}^{n} i^{2}$. In "display style", subscripts and superscripts on \sum are rendered differently; the same formula produces:

$$
\sum_{i=0}^{n} i^{2}
$$

This behaviour is an example of a "big operator". Others include \prod, \lim, \bigcap, etc.
Regular parentheses do not scale around a large expression, producing outputs like $\left(\frac{a}{b}\right)$. Commands \left and \right can be used to produce a pair of parentheses (or other bracket-like symbols) that scales with the expression between them. The commands are followed by the type of bracket (like (or [), for example \left ($\backslash f r a c\{a\}\{b\}$ \backslash right) produces $\left(\frac{a}{b}\right)$. The \left and \right commands have to be balanced, but the exact bracket-like characters used don't have to match, allowing for examples like $\left(-\infty, \frac{a}{b}\right]$.
In math mode, letters are italicised by default, as that is the convention for variable names. To typeset operation names in roman font, they should be put inside \operatorname\{...\}. Likewise, \mathbb\{...\} is used to render letters in the "blackboard" font, e.g. \mathbb{R} is produced by \backslash mathbb $\{\mathrm{R}\}$. Other available fonts include \mathcal\{...\} for calligraphic, \mathscr\{...\} for script, \backslash mathfrak\{...\} for fraktur, and \mathsf\{...\} for sans-serif.

[^0]| Simple Algebra | | Greek Letters | |
| :---: | :---: | :---: | :---: |
| \div | \div | \alpha | α |
| $\backslash f r a c\{a\}\{b\}$ | $\frac{a}{b}$ | \backslash beta | β |
| \backslash times | \times | \gamma | γ |
| a \cdot b | b | \delta | δ |
| $a \sim\{b\}$ | a^{b} | \backslash Delta | Δ |
| a_b | a_{b} | \epsilon | ϵ |
| \pm | \pm | \varepsilon | ε |
| $\backslash \mathrm{mp}$ | 干 | \backslash zeta | ζ |
| \sqrt\{a\} | \sqrt{a} | \eta | η |
| \backslash sqrt [b] \{a\} | $\sqrt[b]{a}$ | \backslash theta | θ |
| \backslash neq, \backslash not $=$ | \neq | \vartheta | ϑ |
| \approx | \approx | \backslash Theta | Θ |
| \sim | \sim | \iota | ι |
| \propto | \propto | \kappa | κ |
| \backslash leq, \le | \leq | $\backslash \mathrm{lambda}$ | λ |
| $\backslash \mathrm{geq}, \backslash \mathrm{ge}$ | \geq | \backslash Lambda | Λ |
| $\backslash 11$ | \ll | $\backslash \mathrm{mu}$ | μ |
| $\backslash \mathrm{gg}$ | > | $\backslash \mathrm{nu}$ | ν |
| \cong | \cong | $\backslash \mathrm{pi}$ | π |
| \lvert a \rvert | $\|a\|$ | $\backslash \mathrm{Pi}$ | Π |
| \lfloor a \rfloor | $\lfloor a\rfloor$ | \rho | ρ |
| \lceil a \rceil | $\lceil a\rceil$ | \sigma | σ |
| \bar\{a\} | \bar{a} | \backslash Sigma | Σ |
| $\backslash \mathrm{Re}$ | \Re | \tau | τ |
| \Im | \Im | \upsilon | v |
| a \circ b | $a \circ b$ | \Upsilon | Υ |
| \backslash mathbb ${ }^{\text {N }}$ \} | \mathbb{N} | \backslash phi | ϕ |
| | | \varphi | φ |
| Set Theory \& Logic | | \backslash Phi | Φ |
| \in | ϵ | \chi | χ |
| \backslash notin | \notin | $\backslash \mathrm{psi}$ | ψ |
| \varnothing | \varnothing | \backslash Psi | Ψ |
| \subset | \subset | \omega | ω |
| \subseteq | \subseteq | \backslash Omega | Ω |
| \backslash supset | \bigcirc | | |
| \backslash supseteq | ? | Calculus | |
| \cup | \cup | \sum | \sum |
| \cap | \cap | \backslash prod | Π |
| \backslash setminus | 1 | \coprod | U |
| \backslash forall | \forall | \infty | ∞ |
| \exists | \exists | \to | \longrightarrow |
| \implies | \Longrightarrow | \backslash mapsto | \mapsto |
| \iff | \Longleftrightarrow | \uparrow | \uparrow |
| | | \downarrow | \downarrow |
| Simple Geometry | | \prime | 1 |
| \parallel | \|| | \backslash partial | ∂ |
| \backslash nparallel | H | $\backslash \operatorname{dot}\{\mathrm{a}\}$ | \dot{a} |
| \backslash perp | \perp | $\backslash \operatorname{ddot}\{\mathrm{a}\}$ | \ddot{a} |
| \angle | \angle | \int_\{a\}^\{b\} | \int_{a}^{b} |
| \triangle | \triangle | \iint | \iint |
| \square | $\xrightarrow{\square}$ | \iiint | \iiint |
| \overrightarrow\{AB\} | $\overrightarrow{A B}$ | \oint | \oint |
| \overline\{AB\} | $\overline{A B}$ | \backslash nabla | ∇ |

[^0]: While it is definitely possible to write \frac 12 for $\frac{1}{2}$, it is somewhat customary to always surround arguments to macros with braces.

